OmROn
Type G9SX-GS226-T

English USER'S MANUAL

Thank you for purchasing G9SX Flexible Safety U using the products.

- yualified person trained in profession
ease consult your OMRON representative if
ave any questions or comments Guide (No Z255) Make sure that information written in this document are delivered to the final user of the product.

OMRON Corporation

EU Declaration of Conformity OMRON declares that G9SX-GS is in eone forme EMC Directive 2014/30/EU

Standards

Standards
G9SX-GS \square is designed and manufactured in accordance
with the following standards:
EN ISO13849-1:2015 Category 4 PL e,
IEC/EN61508 SIL3, \quad IEC/EN62061 SIL3,
IEC/EN61000-6-2, IEC/EN61000-6-4,
UL508,
CAN/CSA C22.2 No.142
Saf1998,
Safety Precautions

The following signal words are used in this manual

\triangle WARNIN	Indicates a potentially hazardous situation which, if not avoided, will result in minor or moderate injury, or may result in serious injury or death. Additionally there may be significant property damage.
Meaning of Alert Symbols The following alert symbols are used in this manual.	
	Indicates prohibited actions.
	Indicates mandatory actions.
Alert Statements	
\triangle WARNING	
Serious injury may possibly occur due to breakdown of safety outputs. Do not connect loads beyond the rated value to the safety Q outputs.	
Serious injury may possibly occur due to loss of required safety functions. Wire G9SX properly so that supply voltages or voltages for loads do NOT touch the safety inputs accidentally or unintentionally.	
Serious injury may possibly occur due to damages of safety inputs. Apply protection circuitry against back electromotive force ! in case connecting inductive loads to safety outputs.	
Serious injury may possibly occur due to loss of safety functions. Use appropriate devices referring to the information provided below.	
Controlling Devices	Requirements
Door interlocking switch Limit switch	Use approved devices with Direct Opening Mechanism complying with IEC/EN 60947-5-1 and capable of switching micro loads of 24 VDC , 5 mA .
Safety Sensor	Use certified devices complying with the relevant product standards, regulations and rules in the country where it is used. Consult a certification body to assess that the entire system satisfies the required safety category level.
Relay with forcibly guided contacts	Use approved devices with forcibly guided contacts complying with IEC 61810-3 (EN 50205). For feedback purpose use devices with contacts capable of switching micro loads of $24 \mathrm{VDC}, 5 \mathrm{~mA}$.
Contactor	Use a standard certified product that meets the requirements for the auxiliary contact (mirror contact) linked to the main contact of IEC/EN60947-4-1. Use feedback contacts that can be applied to minute loads (24 VDC, 5 mA).
Emergency stop switch	Do not connect an Emergency stop switch to G9SX-GS.
Other devices	Evaluate whether devices used are appropriate to satisfy the requirements of safety category level.

functions.
Construct safety system appropriate for the application
and condition where G9SX is used.

Switching	Auto switching
Example of	
safety system	
construction	

Switching
Example of
safety system

construction

Precautions	(1) Choose a safety sensor satistying the following.
1) Detection capability $<$ Letection object	

Safety Distance
The satety distance is the distance that must be set between the safety
innut deviece and a machine's hazardous part to stop the hazardous part
beto to the standards of a ofject reaches it. The safety distance varies according to the standards of each country and the individual speaifications of each
machine. In addition, the callalation of the saftety distance dififers if the
direction direction of approach is not perpendicular to the detection zone of the
safety input device. Always refer to relevant standards When a perso approaches fo
a hazardous a hazardous
part (Machine)

1: Safety distance 1

When a
hazardou part(Machine) apperson

Calculation of safety distance (reference)
A calculation of
the the detection object approaches the the safety
distance
refering referring to
international
standard ISO standard
$13855-2002$
(Europan (European
standard standard
EN999-1999

$. S 1=K 1 \times T+C$ $. S 2=K 2 \times T+C$

-		C: $\quad \begin{array}{l}\text { Additional distance calculated by the } \\ \text { detection capability of the safety }\end{array}$
A calculation of	When the	
the		the safety

distance detection area perpendicularly
 B11.19

S2: Safety distance 2

$\begin{array}{ll}\text { K2: } & \text { Maximum approach speed } \\ \text { the detection area(area A) } \\ \text { Ts: } & \text { Machine's stopping time }\end{array}$
$\begin{array}{lll}\text { Tr: } & \text { Response time of the GgSs system from ON to OFF } \\ \text { TC: } & \text { Machine control circuit's maximum response }\end{array}$ time required to activate its brake
Additional time
Tbm: Additional time

1) For approach speed K1, cons physical ability of an operator

2) Chysical ability of an operator.
3) Consult a certification body regarding approach speed K2.
4) The response time of a machine is the time period from when the machine receives a stop signal to when the machine's
hazardous part stops. Measure the response time on the actual system. Also, periodically check that the response time
of the machine has not changed 4) of the machine has not changed.
 (1) USe G9SX-GSD within an enclosure with IP54 Protection or higher according to
IEC/EN60529
(2) Incorrect tiving may lead to loss of sateity function. Wire conductors correctly
and verify the operation of G9SX-GS before using the system in which (3) Do not apply DC voltages exceededing the rated voltages, nor any AC voltages to
G9Sx-GI. Use DC supply satistying requirements below to prevent electric shock.
$-D C$ power supply with double or reinforced insulation, for example acc - DC supply satisfies the requirement for class 2 circouits or (5) Apply properly specified voltages to G9SX-GSD inputs. Each ond which leads to the loss of safety funcions or damages to Gos x-Gpecified. correctly to secure the satety function. Do not use auxiliary outputs as any safety output.
Such incorrect use causes loss of safety function of G9SX-GS■ and its relevant system.
Also Logical con
(8) When setting the swith ong function, be sure to consider safety control
requirements, safety level and safety category of the entire system. 9) Atter installatition of G9SX-GS■, , पualified eprsonnel should confirm the The qualified personnel should be qualified and authorized to secure the
safety on each phases of design, installation, unning, maintenance and A person in charge, who is familiar to the machine in which G9SX-GS■ is to Mode selector switch should be operated only by qualified personnel who is
famil ar to the machine For exampe to avoid unauthorized personnel's or switch with
5) Perform daliy and 6 -month inspections for the G9SX-GSロ. system may alai Io work properyy, resulting in serious injury.
(13) Do not dismantte, repair, or modify G99XX-GS■. It may lead to loss of its
satety 14) SUe only appropriate components or devices complying with relevant safety
standards corresponding to the required level of sayety categories. Conformity to requirements of safety category is determined as an entire system.
It is recommended to consult a certification body regarding assessmen contiormity to the required safety level.
(16) Disconnect G9SX-GSD from power supply when
connected to G9SX-GS sockets to the plugs on your fing

Preset Switches

Name	Function	State/Value (position of switc)
Logical AND	Sets Lo	OFF (Invalid:
Connection Preset Swit	Connection Inputs to	AND (valid)
Switching function Preset Switch	Selects Switching of Safety Guard Switching (*2)	default setting value)/Manual
Off-delay Time Preset Switch	Presets Off-delay time (duplicate) (*3), (*4)	0 (default setting value) (0.2/0.3/0.4/0.5/0.6/0.7/1/1.5/2

Auto switching function
Manaual switching function $\cdots \mathrm{M} 1$ and M2 must be opet
(3) $\begin{aligned} & \text { refer } 5 \text {.Application Examples in detail and M2 must be set } \\ & \text { Set both of the two Offl-delay Time Preset Switches, one each on the front and }\end{aligned}$

2 Internal Connection

4 Ratings and Specifications

Item		TYPE G9SX-GS226-TD-D
Power input	Rated supply voltage	24 VDC
	Operating voltage range	-15% to $+10 \%$ of rated supply voltage
	Rated power consumption (See Note1)	5 W Max.
Inputs	Safety input Feedback/reset input Mode selector input	Operating voltage: 20.4VDC to 26.4VDC, Internal impedance : approx. 2.8kohm (see note2)
Outputs	Safety solid-state output Off-delayed safety solid-state output (See Note3, 4)	P channel MOS FET output Load current: 0.8 A DC max. (see note5,6)
	Auxiliary output	PNP transistor output Load current: 100mA DC Max.
	External indicator output	P channel MOS FET output Connectable indicator Incandescent lamp : 24VDC, 3~7W LED lamp : Load current $10 \sim 300 \mathrm{~mA} \mathrm{DC}$

Isolation specifications

ltem				
Insulation resistan	- Between Logical AND input terminals, and Power supply input terminals and other input and output terminals connected together.		20Mohm Min. (by 100 VDC meg	
	- Between all terminals connected together and DN		20 Mohm Min.	
Dielectric strength	- Between Logical AND connection terminals, and Power supply input terminals and other input and output terminals connected together.		AC for	
	- Between all terminals connected together and DIN rail.		for 1 min	
Note: (1) Power consumption of loads not included. (2) Ensure that the current exceeds the minimum applicable load of the device connected. (3) While safety outputs are at its ON state, signal sequence shown below is output continuously for diagnosis. When using the safety outputs as input signals to control devices (e.i. programmable controller), consider the off pulse below.		Note: (7) When multiple units are connected by logical connection, the total operating/response time is an accumulation of the operating/response time connected. (8) Required time for safety solid-state output to turn ON, after necessary inputs turn ON. (9) Permissible time period from when the mode selector switch starts its changeover action to completing it. Incorrect inputs lead to the error of the G9SX-GS. (10) Response time from selector switch inputs are enabled to safety input enabling status is changed.		
$360 \mu \mathrm{~s}$ Max. (4) When the safety inputs of G9SX are restored during off-delay time, G9SX will operate as below depending on the reset mode. - Auto reset mode:Outputs turn off after off-delay time, then immediately turns on. - Manual reset mode:Outputs turn off after off-delay time, then				

Item	TYPE G9SX-GS226-TI-प
Over voltage category (IEC/EN 60664-1)	11
Operating time (OFF to ON state)	$50 \mathrm{~ms} \mathrm{Max}$. (Safety input)
(see noter, 8)	$100 \mathrm{~ms} \mathrm{Max}$. (Logical AND connection input)
Response time (ON to OFF state) (see noter)	15 ms Max.
Permissive time for mode selector inputs (see note 9,1)	450 ms Max.
Mode selector input response time (see note 10,11)	50 ms Max.
ON-state residual voltage	3.0 V Max.
OFF-state Leakage current	0.1 mA Max.
Maximum cable length for logical connection inputs and Safety inputs	100m Max. (Permissible impedance : 100 ohm Max. and 10 nF Max.)
Number of units connected per one Logical connection output.	4 units Max.
Total number of units connected with Logical connection (see note 11)	20 units Max.
Number of units connected in series with Logical connection	5 units Max.
Accuracy of Off-delay time	Within plus or minus 5% of the set value
Reset input time	$100 \mathrm{~ms} \mathrm{Min}$.
Vibration resistance	Frequency: 10 to 55 to 10 Hz , Amplitude: 0.375 mm half amplitude (0.75 mm double amplitude)
Mechanical shock resistance	$300 \mathrm{~m} / \mathrm{s}^{2}$ (destruction), $100 \mathrm{~m} / \mathrm{s}^{2}$ (malfunction)
Ambient temperature	-10 to $+55^{\circ} \mathrm{C}$ (No freezing or condensation)
Ambient humidity	25 to 85\%RH
Terminal tightening torque	0.5 Nm (Applicable only to TYPE G9SX-D-RT: screw terminal model)
Weight	Approx. 240 g
- Connecting Safety Sensors and G9SX-GS	- Terminal arrangement and LED indicators
1) When connecting Safety sensors with G9SX-GS, Y1 terminal must be connected to 24VDC as Safety input channel A, also Y2 terminal must be connected to 24VDC as Safety input channel B. G9SX-GS will detect the connection error, if Y 1 or Y 2 terminal is open.	TYPE G9SX-Gs226-T15--
	(131) (132) (133) (11) (M1) M2) (1) (1B
	(111)(112)(161)(162)(12) (13)(14) (A1)
	\pwr $]_{\text {fb }}$ Iand
2) In many case, Safety Sensor outputs include the off-shot pulse for its self test.	$\square_{\text {T1 }}$ ■ua $\square_{\text {T2 }}$
The following condition of test pulse is applicable as safety inputs for G9SX.	
- Off-shot pulse width of the sensor, during the ON-state : $500 \mu \mathrm{~s}$ Max.	पel \ed
	IERR
	(22)(711) (172)(141) (442) (L1) (A)
$\stackrel{500 \mu s \text { Max. }}{ }$	$x_{1} \times x_{2}\left(x_{3} \times x_{4}\right)(114)(244)(544)$

6 Performance Level and Safety Category of ISO13849-1
 The G9SX-GS can be used up to PL=d and Category 4 required by EN ISO13849-1 European standard Refer to the following link for the Saety-related characteristic data:

http://www.fa.omron.co.jp/satety 6 en/ /his does NOT mean that G9SX-GS can alway be used for required category under all the similar conditions and situations. Conformity to the categories must be assessed as a whole system.
When using G9SX-GS for safety categories, make sure the conformity of the whole system

1) Input the signals to both of the Safety inputs (T11-T12, T21-T22, T61-T62 and T71-T72)

俍
3) When connecting Safety sensor with G9SX, use TYPE 4 safety sensor.
4) Input the signal through a NC contact of the contactor to Feedback/Reset input (T31-T32 for manual reset or T31-T32 for auto reset). (Refer to '5.Examples of Application')
Keep Cross fault detection mode input (Y1, Y2) open. However, when connecting devices with self-diagnosis function, such as safety 6) Be sure to connect A2 to ground.

7 Fault Detection

When G9SX-GS detects a fault, ERR indicator and/or other indicators light up or blink to show the information of the faut
Check and take needed measures referring to the following table, and then apply supply voltage to G9SX-GS

ERR indicator	Other indicators	Faults	Expected causes of the fauts	Checking points and measures to take
$\begin{aligned} & \text { Blink } \\ & \text { Be } \end{aligned}$		Faults by electro-magnetic disturbance or of internal circuits.	1) By excessive electro-magnetic disturbance 2) Failures of the parts of internal circuits 1) Failures involving the wiring of Satety input A ch1 2) Incorrect setting of Cross fault detection mode 3) Failures of the parts of the circuits of Satety input A ch1. 1) Failures involving the wiring of Saiety input A ch2 3) Failures of the parts of the circouits of safefty input A ch2. 1) Failures involving the wiring of Satety input B ch1 2) Incorrect setting of Cross fault detection mode. 3) Failures of the parts of the circuits of Saitety input B ch 1 . 1) Falures involving the wiring of Satety input B ch2 2) Incorrect setting of Cross fault detection mode. 3) Failures of the parts of the circuits of Satety input $B \mathrm{ch} 2$. 1) Fallures involving the wiring of FeedbackReset input. 2) Failures of the parts of the circuits of FeedbackReset input 1) Improper feedback signals from Expansion units 2) Abnormal supply voltage to Expansion units 3) Failures of the parts of the circuits of Safety relay contact outputs 1) Failures involving the wiring of Saiety solid-state outputs 2) Failures of the parts of the circuits of Statety solid-stiate outputs 3) Failures involving the wiring of Logical connection output 4) Failures of the parts of the e circuits of Logical connection output 5) Impermissibl high ambient temperature 1) Failures involving the wiring of off-delayed Safety relay contact outputs 2) Incorrect set values of Off-delay time 3) Failures of the parts of the circuits of Off-delayed Safety relay contact outputs 4) Impermissible high ambient temperature 1) Failures involving the wiring of Logic AND connection input 2) Incorrect setting for Logic AND connection input 3) Failures of the parts of the circuits of Logical AND connection input 1) Failures involving the wiring of External indicatoro output UA 2) Failures involving the wing of Exxernal indicator faut detect input Y_{3} 3) Failures of the parts of the circuits of Exernal indicator output UA 4) Failures of the External indicator 4) Failures of the External indicator 1) Failures involving the wiring of Exemal indicator output UB 2) Failuses involing the wininof External indiciato faut detect inputY4 3) Failures of the parts of the eircuits of Ex 4) Failures of the External indicator 1) Failures involving switching mode preset switch or the wiring of mode input M1 and M2 2) Failures of mode select input 3) Failures of the parts of the circuils of mode select input 1) Supply voltage outside the rated value	1) Check the disturbance level around G9SX-GS and its related system. 2) Replace with a new product. 1) Check the wiring to T11 and T12. 2) Check the wiring to Y1. 3) Replace with a new product. 1) Check the wiring to T21 and T22. 2) Check the wiring to Y1. 3) Replace with a new product. 1) Check the wiring to T61 and T62. 2) Check the wiring to $Y 2$. 1) Check the wiring to T71 act. 2) Check the wiring to Y2. 3) Replace with a new product. 1) Check the wiring to T31, T32, and T33 2) Replace with a new product. 1) Check the connecting cable of Expansion units and the connection of the termination socket. 2) Check the supply voltage to Expansion units. Make sure that all Expansion units' PWR indicators are lighting 3) Replace the Expansion unit with a new one. 1) Check the wiring to S14 and S24 2) Replace with a new product. 3) Check the wiring to L1. 4) Replace with a new product. 5) Check the ambient temperature and spacing around G9SX-GS around G9SX-GS. 1) Check the wiring to 544 and 554 2) Confirm the set values of the two of Off-delay time preset switches. 4) Check the ambient temperature and spacing around G9SX-GS226-T \square - \square. 1) Check the wiring to T41 and T42 Make sure that the wiring length for T41 or T42 * Make sure that the Logical AND connection signal is branched for less than 4 units. 2) Confirm the set value of the Logical 3) Replace with a new product. 1) Check the wiring to $U A$ 2) Check the wiring to $Y 3$ 3) Replace with 2 RDC. 4) Replace with a new product. 1) Check the wiring to UB 2) Check the wiring to $Y 4$ *In case external indicator is not connected to UB terminal or LED indicator is connected to UB terminal, Y4 terminal must be connected to 24 VDC . 3) Replace with a new product. 4) Replace with a External indicator. 1) Check the switching mode preset switch and the wiring to M1 and M2. 2) Check the wiring to M1 and M2. 3) Replace with a new product. 1) Check the supply voltage to Expansion units.
$\underset{\text { Light }}{\substack{\text { up }}}$	T1 Blink	Faults involved with Safety input A ch1		
	T2 Blink	Faults involved with Safety input A ch2		
	Blink	Faults involved with Safety input B ch1		
	$7 \text { Bink }$	Faults involved with Safety input B ch2		
		Faults involved with Feedback/Reset inpu		
	Blink	Faults of Expansion units		
	Blink	Faults involved with Safety solid-state outputs Logical connection outputs		
	Blink	Faults involved with Off-delayed Safety solid-state outputs		
	-	Faults involved with Logic AND connection input		
	Blink	Faults involved with External Indicator output UA.		
	B Blink	Faults involved with External Indicator outpu UB.		
	$\begin{aligned} & \text { UA and UB } \\ & \text { Blink } \end{aligned}$	Faults of switching mode		
	$\begin{gathered} \text { The All (inuou Pwe) } \\ \text { indicators Blink } \end{gathered}$	Supply voltage outside the rated value		

When some indicators blink except ERR indicator, check and take needed actions referring to the following table.

$\begin{gathered} \text { ERR } \\ \text { indicator } \end{gathered}$	The other indicators	Conditions	Expected causes of the fauts	Expected causes of the faults
Light off		Mismatch between input A ch1 and input A ch2.	1) Input status between input A ch1 and input A ch2 is difterent, cause of contact tailure or short circuit of safety input device(s) or any wiring fault.	1) Check the wiring from safety input devices to G9SX-GS. Or check the inputs sequence of safety input devices. After removing the fault, turn both safety inputs to OFF state.
Light off	T6 Blink or / and T7 Blink	Mismatch between input B ch1 and input B ch2.	1) Input status between input B ch1 and input B ch2 is different, cause of contact failure or short circuit of safety input device(s) or any wiring tautt.	1) Check the wiring from safety input devices to G9SX-GS. Or check the inputs sequence of safety input devices. After removing the fall turn both safety inputs to OFF stas

